@ell.complex

While @ell.simple provides a straightforward way to work with language models that return text, modern language models are increasingly capable of handling and generating multimodal content, structured outputs, and complex interactions. This is where @ell.complex comes into play.

The @ell.complex decorator is designed to handle sophisticated interactions with language models, including multimodal inputs/outputs, structured data, and tool usage. It extends @ell.simple’s capabilities to address the evolving nature of language models, which can now process images, generate structured data, make function calls, and engage in multi-turn conversations. By returning rich Message objects instead of simple strings, @ell.complex enables more nuanced and powerful interactions, overcoming the limitations of traditional string-based interfaces in these advanced scenarios.

Note

Messages in ell are not the same as the dictionary messages used in the OpenAI API. ell’s Message API provides a more intuitive and flexible way to construct and manipulate messages. You can read more about ell’s Message API and type coercion in the Messages page.

Usage

The basic usage of @ell.complex is similar to @ell.simple, but with enhanced capabilities:

import ell
from pydantic import BaseModel, Field

class MovieReview(BaseModel):
    title: str = Field(description="The title of the movie")
    rating: int = Field(description="The rating of the movie out of 10")
    summary: str = Field(description="A brief summary of the movie")

@ell.complex(model="gpt-4o-2024-08-06", response_format=MovieReview)
def generate_movie_review(movie: str):
    """You are a movie review generator. Given the name of a movie, you need to return a structured review."""
    return f"Generate a review for the movie {movie}"

review_message = generate_movie_review("The Matrix")
review = review_message.parsed
print(f"Movie: {review.title}, Rating: {review.rating}/10")
print(f"Summary: {review.summary}")

Key Features

1. Structured Outputs

@ell.complex allows for structured outputs using Pydantic models:

@ell.complex(model="gpt-4o-2024-08-06", response_format=MovieReview)
def generate_movie_review(movie: str) -> MovieReview:
    """You are a movie review generator. Given the name of a movie, you need to return a structured review."""
    return f"Generate a review for the movie {movie}"

review_message = generate_movie_review("Inception")
review = review_message.parsed
print(f"Rating: {review.rating}/10")

2. Multimodal Interactions

@ell.complex can handle various types of inputs and outputs, including text and images:

from PIL import Image

@ell.complex(model="gpt-5-omni")
def describe_and_generate(prompt: str):
    return [
        ell.system("You can describe images and generate new ones based on text prompts."),
        ell.user(prompt)
    ]

result = describe_and_generate("A serene lake at sunset")
print(result.text)  # Prints the description
if result.images:
    result.images[0].show()  # Displays the generated image

3. Chat-based Use Cases

@ell.complex is particularly useful for chat-based applications where you need to maintain conversation history:

from ell import Message

@ell.complex(model="gpt-4o", temperature=0.7)
def chat_bot(message_history: List[Message]) -> List[Message]:
    return [
        ell.system("You are a friendly chatbot. Engage in casual conversation."),
    ] + message_history

message_history = []
while True:
    user_input = input("You: ")
    message_history.append(ell.user(user_input))
    response = chat_bot(message_history)
    print("Bot:", response.text)
    message_history.append(response)

4. Tool Usage

@ell.complex supports tool usage, allowing language models to make function calls:

@ell.tool()
def get_weather(location: str = Field(description="The full name of a city and country, e.g. San Francisco, CA, USA")):
    """Get the current weather for a given location."""
    # Simulated weather API call
    return f"The weather in {location} is sunny."

@ell.complex(model="gpt-4-turbo", tools=[get_weather])
def travel_planner(destination: str):
    """Plan a trip based on the destination and current weather."""
    return [
        ell.system("You are a travel planner. Use the weather tool to provide relevant advice."),
        ell.user(f"Plan a trip to {destination}")
    ]

result = travel_planner("Paris")
print(result.text)  # Prints travel advice
if result.tool_calls:
    # This is done so that we can pass the tool calls to the language model
    result_message = result.call_tools_and_collect_as_message()
    print("Weather info:", result_message.tool_results[0].text) # Raw text of the tool call.
    print("Message to be sent to the LLM:", result_message.text) # Representation of the message to be sent to the LLM.

Reference

ell.complex(model: str, client: Any | None = None, tools: List[Callable] | None = None, exempt_from_tracking=False, post_callback: Callable | None = None, **api_params)

A sophisticated language model programming decorator for complex LLM interactions.

This decorator transforms a function into a Language Model Program (LMP) capable of handling multi-turn conversations, tool usage, and various output formats. It’s designed for advanced use cases where full control over the LLM’s capabilities is needed.

Parameters:
  • model (str) – The name or identifier of the language model to use.

  • client (Optional[openai.Client]) – An optional OpenAI client instance. If not provided, a default client will be used.

  • tools (Optional[List[Callable]]) – A list of tool functions that can be used by the LLM. Only available for certain models.

  • response_format (Optional[Dict[str, Any]]) – The response format for the LLM. Only available for certain models.

  • n (Optional[int]) – The number of responses to generate for the LLM. Only available for certain models.

  • temperature (Optional[float]) – The temperature parameter for controlling the randomness of the LLM.

  • max_tokens (Optional[int]) – The maximum number of tokens to generate for the LLM.

  • top_p (Optional[float]) – The top-p sampling parameter for controlling the diversity of the LLM.

  • frequency_penalty (Optional[float]) – The frequency penalty parameter for controlling the LLM’s repetition.

  • presence_penalty (Optional[float]) – The presence penalty parameter for controlling the LLM’s relevance.

  • stop (Optional[List[str]]) – The stop sequence for the LLM.

  • exempt_from_tracking (bool) – If True, the LMP usage won’t be tracked. Default is False.

  • post_callback (Optional[Callable]) – An optional function to process the LLM’s output before returning.

  • api_params (Any) – Additional keyword arguments to pass to the underlying API call.

Returns:

A decorator that can be applied to a function, transforming it into a complex LMP.

Return type:

Callable

Functionality:

  1. Advanced LMP Creation:
    • Supports multi-turn conversations and stateful interactions.

    • Enables tool usage within the LLM context.

    • Allows for various output formats, including structured data and function calls.

  2. Flexible Input Handling:
    • Can process both single prompts and conversation histories.

    • Supports multimodal inputs (text, images, etc.) in the prompt.

  3. Comprehensive Integration:
    • Integrates with ell’s tracking system for monitoring LMP versions, usage, and performance.

    • Supports various language models and API configurations.

  4. Output Processing:
    • Can return raw LLM outputs or process them through a post-callback function.

    • Supports returning multiple message types (e.g., text, function calls, tool results).

Usage Modes and Examples:

  1. Basic Prompt:

@ell.complex(model="gpt-4")
def generate_story(prompt: str) -> List[Message]:
    '''You are a creative story writer''' # System prompt
    return [
        ell.user(f"Write a short story based on this prompt: {prompt}")
    ]

story : ell.Message = generate_story("A robot discovers emotions")
print(story.text)  # Access the text content of the last message
  1. Multi-turn Conversation:

@ell.complex(model="gpt-4")
def chat_bot(message_history: List[Message]) -> List[Message]:
    return [
        ell.system("You are a helpful assistant."),
    ] + message_history

conversation = [
    ell.user("Hello, who are you?"),
    ell.assistant("I'm an AI assistant. How can I help you today?"),
    ell.user("Can you explain quantum computing?")
]
response : ell.Message = chat_bot(conversation)
print(response.text)  # Print the assistant's response
  1. Tool Usage:

@ell.tool()
def get_weather(location: str) -> str:
    # Implementation to fetch weather
    return f"The weather in {location} is sunny."

@ell.complex(model="gpt-4", tools=[get_weather])
def weather_assistant(message_history: List[Message]) -> List[Message]:
    return [
        ell.system("You are a weather assistant. Use the get_weather tool when needed."),
    ] + message_history

conversation = [
    ell.user("What's the weather like in New York?")
]
response : ell.Message = weather_assistant(conversation)

if response.tool_calls:
    tool_results = response.call_tools_and_collect_as_message()
    print("Tool results:", tool_results.text)

    # Continue the conversation with tool results
    final_response = weather_assistant(conversation + [response, tool_results])
    print("Final response:", final_response.text)
  1. Structured Output:

from pydantic import BaseModel

class PersonInfo(BaseModel):
    name: str
    age: int

@ell.complex(model="gpt-4", response_format=PersonInfo)
def extract_person_info(text: str) -> List[Message]:
    return [
        ell.system("Extract person information from the given text."),
        ell.user(text)
    ]

text = "John Doe is a 30-year-old software engineer."
result : ell.Message = extract_person_info(text)
person_info = result.parsed
print(f"Name: {person_info.name}, Age: {person_info.age}")
  1. Multimodal Input:

@ell.complex(model="gpt-4-vision-preview")
def describe_image(image: PIL.Image.Image) -> List[Message]:
    return [
        ell.system("Describe the contents of the image in detail."),
        ell.user([
            ContentBlock(text="What do you see in this image?"),
            ContentBlock(image=image)
        ])
    ]

image = PIL.Image.open("example.jpg")
description = describe_image(image)
print(description.text)
  1. Parallel Tool Execution:

@ell.complex(model="gpt-4", tools=[tool1, tool2, tool3])
def parallel_assistant(message_history: List[Message]) -> List[Message]:
    return [
        ell.system("You can use multiple tools in parallel."),
    ] + message_history

response = parallel_assistant([ell.user("Perform tasks A, B, and C simultaneously.")])
if response.tool_calls:
    tool_results : ell.Message = response.call_tools_and_collect_as_message(parallel=True, max_workers=3)
    print("Parallel tool results:", tool_results.text)

Helper Functions for Output Processing:

  • response.text: Get the full text content of the last message.

  • response.text_only: Get only the text content, excluding non-text elements.

  • response.tool_calls: Access the list of tool calls in the message.

  • response.tool_results: Access the list of tool results in the message.

  • response.structured: Access structured data outputs.

  • response.call_tools_and_collect_as_message(): Execute tool calls and collect results.

  • Message(role=”user”, content=[…]).to_openai_message(): Convert to OpenAI API format.

Notes:

  • The decorated function should return a list of Message objects.

  • For tool usage, ensure that tools are properly decorated with @ell.tool().

  • When using structured outputs, specify the response_format in the decorator.

  • The complex decorator supports all features of simpler decorators like @ell.simple.

  • Use helper functions and properties to easily access and process different types of outputs.

See Also:

  • ell.simple: For simpler text-only LMP interactions.

  • ell.tool: For defining tools that can be used within complex LMPs.

  • ell.studio: For visualizing and analyzing LMP executions.